Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(3): 168411, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38135181

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.


Subject(s)
Benzo(a)pyrene , Environmental Pollutants , Receptors, Aryl Hydrocarbon , Humans , Benzo(a)pyrene/chemistry , Binding Sites , Ligands , Protein Domains , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/chemistry , Environmental Pollutants/chemistry
2.
Nucleic Acids Res ; 51(12): 6006-6019, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37099381

ABSTRACT

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.


Subject(s)
Histone Deacetylases , Nucleosomes , Chromatin/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Multiprotein Complexes/metabolism , Nucleosomes/genetics , Transcription Factors/metabolism , Humans
3.
Methods Mol Biol ; 2633: 65-79, 2023.
Article in English | MEDLINE | ID: mdl-36853457

ABSTRACT

The ability to enzymatically assemble DNA oligonucleotides into longer DNA duplexes in a process known as gene synthesis has wide-ranging applications in the fields of genetic engineering and synthetic biology. Thermodynamically balanced inside-out (TBIO) gene synthesis is one of several PCR-based primer extension gene synthesis protocols that have been developed. In TBIO gene synthesis, overlapping primers with equivalent melting temperatures (Tms) are designed so that the 5' half of the DNA is encoded by sense primers and the 3' half of the DNA molecule is encoded by antisense primers. Primer extension is initiated at the center of the DNA and continues bidirectionally to progressively elongate the DNA molecule. Here we provide the protocols necessary for performing TBIO gene synthesis to generate a DNA molecule of interest.


Subject(s)
Genetic Engineering , Oligonucleotides , Polymerase Chain Reaction , DNA Primers/genetics , Synthetic Biology
4.
Structure ; 30(5): 697-706.e4, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35276081

ABSTRACT

Connexins form large-pore channels that function either as dodecameric gap junctions or hexameric hemichannels to allow the regulated movement of small molecules and ions across cell membranes. Opening or closing of the channels is controlled by a variety of stimuli, and dysregulation leads to multiple diseases. An increase in the partial pressure of carbon dioxide (PCO2) has been shown to cause connexin26 (Cx26) gap junctions to close. Here, we use cryoelectron microscopy (cryo-EM) to determine the structure of human Cx26 gap junctions under increasing levels of PCO2. We show a correlation between the level of PCO2 and the size of the aperture of the pore, governed by the N-terminal helices that line the pore. This indicates that CO2 alone is sufficient to cause conformational changes in the protein. Analysis of the conformational states shows that movements at the N terminus are linked to both subunit rotation and flexing of the transmembrane helices.


Subject(s)
Carbon Dioxide , Connexins , Carbon Dioxide/metabolism , Cell Membrane/metabolism , Connexin 26 , Connexins/chemistry , Connexins/metabolism , Cryoelectron Microscopy , Gap Junctions/metabolism , Humans
5.
Nat Commun ; 12(1): 6095, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667155

ABSTRACT

Y-family DNA polymerase κ (Pol κ) can replicate damaged DNA templates to rescue stalled replication forks. Access of Pol κ to DNA damage sites is facilitated by its interaction with the processivity clamp PCNA and is regulated by PCNA mono-ubiquitylation. Here, we present cryo-EM reconstructions of human Pol κ bound to DNA, an incoming nucleotide, and wild type or mono-ubiquitylated PCNA (Ub-PCNA). In both reconstructions, the internal PIP-box adjacent to the Pol κ Polymerase-Associated Domain (PAD) docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting the Pol κ active site through PCNA, while Pol κ C-terminal domain containing two Ubiquitin Binding Zinc Fingers (UBZs) is invisible, in agreement with disorder predictions. The ubiquitin moieties are partly flexible and extend radially away from PCNA, with the ubiquitin at the Pol κ-bound protomer appearing more rigid. Activity assays suggest that, when the internal PIP-box interaction is lost, Pol κ is retained on DNA by a secondary interaction between the UBZs and the ubiquitins flexibly conjugated to PCNA. Our data provide a structural basis for the recruitment of a Y-family TLS polymerase to sites of DNA damage.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , DNA/metabolism , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Cryoelectron Microscopy , DNA/genetics , DNA Damage , DNA-Directed DNA Polymerase/genetics , Humans , Proliferating Cell Nuclear Antigen/genetics , Protein Binding , Ubiquitin/metabolism , Ubiquitination
6.
Nat Commun ; 12(1): 819, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547302

ABSTRACT

Regulated cell death is essential in development and cellular homeostasis. Multi-protein platforms, including the Death-Inducing Signaling Complex (DISC), co-ordinate cell fate via a core FADD:Caspase-8 complex and its regulatory partners, such as the cell death inhibitor c-FLIP. Here, using electron microscopy, we visualize full-length procaspase-8 in complex with FADD. Our structural analysis now reveals how the FADD-nucleated tandem death effector domain (tDED) helical filament is required to orientate the procaspase-8 catalytic domains, enabling their activation via anti-parallel dimerization. Strikingly, recruitment of c-FLIPS into this complex inhibits Caspase-8 activity by altering tDED triple helix architecture, resulting in steric hindrance of the canonical tDED Type I binding site. This prevents both Caspase-8 catalytic domain assembly and tDED helical filament elongation. Our findings reveal how the plasticity, composition and architecture of the core FADD:Caspase-8 complex critically defines life/death decisions not only via the DISC, but across multiple key signaling platforms including TNF complex II, the ripoptosome, and RIPK1/RIPK3 necrosome.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Caspase 8/chemistry , Fas-Associated Death Domain Protein/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Catalytic Domain , Cloning, Molecular , Cryoelectron Microscopy , Death Domain Receptor Signaling Adaptor Proteins/chemistry , Death Domain Receptor Signaling Adaptor Proteins/genetics , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Regulated Cell Death/genetics , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
7.
Nucleic Acids Res ; 48(22): 12972-12982, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33264408

ABSTRACT

Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.


Subject(s)
Chromatin/genetics , DNA-Binding Proteins/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Repressor Proteins/genetics , Retinoblastoma-Binding Protein 4/genetics , Trans-Activators/genetics , Amino Acid Sequence/genetics , Cryoelectron Microscopy , DNA-Binding Proteins/ultrastructure , Histone Deacetylase 1/genetics , Histone Deacetylase 1/ultrastructure , Histone Deacetylases/genetics , Histone Deacetylases/ultrastructure , Humans , Mi-2 Nucleosome Remodeling and Deacetylase Complex/ultrastructure , Nucleosomes/genetics , Nucleosomes/ultrastructure , Protein Binding/genetics , Protein Domains/genetics , Repressor Proteins/ultrastructure , Retinoblastoma-Binding Protein 4/ultrastructure , Trans-Activators/ultrastructure
8.
J Biomol NMR ; 74(10-11): 565-577, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32638146

ABSTRACT

Fragment-based drug discovery or FBDD is one of the main methods used by industry and academia for identifying drug-like candidates in early stages of drug discovery. NMR has a significant impact at any stage of the drug discovery process, from primary identification of small molecules to the elucidation of binding modes for guiding optimisations. The essence of NMR as an analytical tool, however, requires the processing and analysis of relatively large amounts of single data items, e.g. spectra, which can be daunting when managed manually. One bottleneck in FBDD by NMR is a lack of adequate and well-integrated resources for NMR data analysis that are freely available to the community. Thus, scientists typically resort to manually inspecting large datasets and relying predominantly on subjective interpretations. In this manuscript, we present CcpNmr AnalysisScreen, a software package that provides computational tools for automated analysis of FBDD data by NMR. We outline how the quality of collected spectra can be evaluated quickly, and how robust workflows can be optimised for reliable and rapid hit identification. With an intuitive graphical user interface and powerful algorithms, AnalysisScreen enables easy analysis of the large datasets needed in the early process of drug discovery by NMR.


Subject(s)
Computational Chemistry/methods , Drug Discovery/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Algorithms , Ligands , Software , User-Computer Interface , Workflow
9.
Nat Commun ; 11(1): 1109, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111820

ABSTRACT

In eukaryotes, DNA polymerase δ (Pol δ) bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. We present the high-resolution cryo-EM structure of the human processive Pol δ-DNA-PCNA complex in the absence and presence of FEN1. Pol δ is anchored to one of the three PCNA monomers through the C-terminal domain of the catalytic subunit. The catalytic core sits on top of PCNA in an open configuration while the regulatory subunits project laterally. This arrangement allows PCNA to thread and stabilize the DNA exiting the catalytic cleft and recruit FEN1 to one unoccupied monomer in a toolbelt fashion. Alternative holoenzyme conformations reveal important functional interactions that maintain PCNA orientation during synthesis. This work sheds light on the structural basis of Pol δ's activity in replicating the human genome.


Subject(s)
DNA Polymerase III/chemistry , DNA Polymerase III/metabolism , Amino Acid Motifs , Catalytic Domain , Cryoelectron Microscopy , DNA/metabolism , DNA Polymerase III/genetics , DNA Replication , Flap Endonucleases/chemistry , Flap Endonucleases/metabolism , Holoenzymes , Humans , Models, Molecular , Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/metabolism , Protein Binding , Protein Subunits , Structure-Activity Relationship
11.
Nat Chem Biol ; 14(11): 1032-1042, 2018 11.
Article in English | MEDLINE | ID: mdl-30297875

ABSTRACT

α-Ketoglutarate (αKG) is a key node in many important metabolic pathways. The αKG analog N-oxalylglycine (NOG) and its cell-permeable prodrug dimethyloxalylglycine (DMOG) are extensively used to inhibit αKG-dependent dioxygenases. However, whether NOG interference with other αKG-dependent processes contributes to its mode of action remains poorly understood. Here we show that, in aqueous solutions, DMOG is rapidly hydrolyzed, yielding methyloxalylglycine (MOG). MOG elicits cytotoxicity in a manner that depends on its transport by monocarboxylate transporter 2 (MCT2) and is associated with decreased glutamine-derived tricarboxylic acid-cycle flux, suppressed mitochondrial respiration and decreased ATP production. MCT2-facilitated entry of MOG into cells leads to sufficiently high concentrations of NOG to inhibit multiple enzymes in glutamine metabolism, including glutamate dehydrogenase. These findings reveal that MCT2 dictates the mode of action of NOG by determining its intracellular concentration and have important implications for the use of (D)MOG in studying αKG-dependent signaling and metabolism.


Subject(s)
Amino Acids, Dicarboxylic/chemistry , Ketoglutaric Acids/chemistry , Monocarboxylic Acid Transporters/metabolism , Adenosine Triphosphate/chemistry , Animals , Biochemical Phenomena , Cattle , Cell Line, Tumor , Citric Acid Cycle , Gene Expression Profiling , Glutamine/metabolism , Humans , Hydrolysis , Inhibitory Concentration 50 , MCF-7 Cells , Metabolomics , Mice , Mitochondria/metabolism , Oxygen/chemistry , Puromycin/chemistry , Signal Transduction , Tricarboxylic Acids/chemistry
13.
J Biomol NMR ; 66(2): 111-124, 2016 10.
Article in English | MEDLINE | ID: mdl-27663422

ABSTRACT

NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Software , Statistics as Topic , Molecular Structure , User-Computer Interface , Workflow
14.
J Biomol NMR ; 62(4): 413-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26071966

ABSTRACT

The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100% of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90% of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Proteins/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Datasets as Topic , Proton Magnetic Resonance Spectroscopy , Reproducibility of Results
16.
J Biomol NMR ; 62(4): 527-40, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26032236

ABSTRACT

We performed a comprehensive structure validation of both automated and manually generated structures of the 10 targets of the CASD-NMR-2013 effort. We established that automated structure determination protocols are capable of reliably producing structures of comparable accuracy and quality to those generated by a skilled researcher, at least for small, single domain proteins such as the ten targets tested. The most robust results appear to be obtained when NOESY peak lists are used either as the primary input data or to augment chemical shift data without the need to manually filter such lists. A detailed analysis of the long-range NOE restraints generated by the different programs from the same data showed a surprisingly low degree of overlap. Additionally, we found that there was no significant correlation between the extent of the NOE restraint overlap and the accuracy of the structure. This result was surprising given the importance of NOE data in producing good quality structures. We suggest that this could be explained by the information redundancy present in NOEs between atoms contained within a fixed covalent network.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Proteins/chemistry , Reproducibility of Results , Software
17.
Anal Chem ; 85(24): 12046-54, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24251761

ABSTRACT

The accurate measurement of metabolite concentrations in miniscule biological sample volumes is often desirable, yet it remains challenging. In many cases, the starting analyte volumes are imprecisely known, or not directly measurable, and hence absolute metabolite concentrations are difficult to calculate. Here, we introduce volume determination using two standards (VDTS) as a general quantitative method for the analysis of polar metabolites in submicrolitre samples using (1)H NMR spectroscopy. This approach permits the back calculation of absolute metabolite concentrations from small biological samples of unknown volume. Where small sample volumes are also variable, VDTS can improve multivariate chemometric analysis. In this context, principal component analysis (PCA) yielded more logically consistent and biologically insightful outputs when we used volume-corrected spectra, calculated using VDTS, rather than probabilistic quotient normalization (PQN) of raw spectra. As proof-of-principle, the VDTS-based method and PCA were used to analyze polar metabolites in the hemolymph (blood) extracted from larvae of the very small but widely used genetic model organism Drosophila. This analysis showed that the hemolymph metabolomes of males and females are markedly different when larvae are well fed. However, gender-specific metabolomes tend to converge when larval dietary nutrients are restricted. We discuss the biological implications of these surprising results and compare and contrast them to previous analyses of Drosophila hemolymph and mammalian blood plasma. Together, these findings reveal an interesting and hitherto unknown sexual dimorphism in systemic Drosophila metabolites, clearly warranting further biological investigation. Importantly, the VDTS approach should be adaptable to many different analytical platforms, including mass spectrometry.


Subject(s)
Limit of Detection , Magnetic Resonance Spectroscopy/standards , Metabolomics/standards , Statistics as Topic/standards , Animals , Drosophila melanogaster/metabolism , Female , Hemolymph/metabolism , Larva/metabolism , Male , Reference Standards
18.
PLoS Biol ; 11(9): e1001666, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24086110

ABSTRACT

Cardiomyocytes are vulnerable to hypoxia in the adult, but adapted to hypoxia in utero. Current understanding of endogenous cardiac oxygen sensing pathways is limited. Myocardial oxygen consumption is determined by regulation of energy metabolism, which shifts from glycolysis to lipid oxidation soon after birth, and is reversed in failing adult hearts, accompanying re-expression of several "fetal" genes whose role in disease phenotypes remains unknown. Here we show that hypoxia-controlled expression of the transcription factor Hand1 determines oxygen consumption by inhibition of lipid metabolism in the fetal and adult cardiomyocyte, leading to downregulation of mitochondrial energy generation. Hand1 is under direct transcriptional control by HIF1α. Transgenic mice prolonging cardiac Hand1 expression die immediately following birth, failing to activate the neonatal lipid metabolising gene expression programme. Deletion of Hand1 in embryonic cardiomyocytes results in premature expression of these genes. Using metabolic flux analysis, we show that Hand1 expression controls cardiomyocyte oxygen consumption by direct transcriptional repression of lipid metabolising genes. This leads, in turn, to increased production of lactate from glucose, decreased lipid oxidation, reduced inner mitochondrial membrane potential, and mitochondrial ATP generation. We found that this pathway is active in adult cardiomyocytes. Up-regulation of Hand1 is protective in a mouse model of myocardial ischaemia. We propose that Hand1 is part of a novel regulatory pathway linking cardiac oxygen levels with oxygen consumption. Understanding hypoxia adaptation in the fetal heart may allow development of strategies to protect cardiomyocytes vulnerable to ischaemia, for example during cardiac ischaemia or surgery.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Energy Metabolism/genetics , Lipid Metabolism/genetics , Myocardium/metabolism , Oxygen Consumption/genetics , Adenosine Triphosphate/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia/genetics , Cell Line , Gene Expression Regulation, Developmental , Heart/embryology , Heart/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Membrane Potential, Mitochondrial/genetics , Mice , Mice, Transgenic , Mitochondria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Transcriptional Activation
19.
J Mol Biol ; 420(1-2): 56-69, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22484176

ABSTRACT

Hfq is a bacterial RNA binding protein that facilitates small RNA-mediated posttranscriptional gene regulation. In Vibrio cholerae, Hfq and four Hfq-dependent small RNAs are essential for the expression of virulence genes, but little is known about this mechanism at the molecular level. To better understand V. cholerae Hfq structure and mechanism, we characterized the protein, alongside Escherichia coli Hfq for comparison, using biochemical and biophysical techniques. The N-terminal domain (NTD) of the two proteins is highly conserved, but the C-terminal regions (CTRs) vary in both sequence and length. Small-angle X-ray scattering studies showed that both proteins adopt a star-shaped hexameric structure in which the conserved NTD adopts the expected Sm fold while the variable CTR is disordered and extends radially outwards from the folded core. Despite their structural similarity, SDS-PAGE stability assays and collision-induced dissociation mass spectrometry revealed that the V. cholerae hexamer is less stable than that of E. coli. We propose that this is due to minor differences between the intersubunit interface formed by the NTDs and the ability of the E. coli CTR to stabilize this interface. However, based on electrophoretic mobility shift assays, the divergent CTRs do appear to perform a common function with regard to RNA-binding specificity. Overall, the similarities and differences in the fundamental properties of V. cholerae and E. coli Hfq provide insight into their assembly and molecular mechanisms.


Subject(s)
Host Factor 1 Protein/chemistry , Vibrio cholerae/chemistry , Amino Acid Sequence , Bacterial Proteins/chemistry , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/physiology , Protein Stability , Protein Structure, Tertiary , RNA, Bacterial , RNA-Binding Proteins/chemistry , Structural Homology, Protein , Vibrio cholerae/pathogenicity , Virulence/genetics
20.
Cell ; 146(3): 435-47, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21816278

ABSTRACT

Developing animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.


Subject(s)
Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Anaplastic Lymphoma Kinase , Animals , Brain/growth & development , Brain/metabolism , Central Nervous System/growth & development , Central Nervous System/metabolism , Food Deprivation , Intercellular Signaling Peptides and Proteins/metabolism , Larva/growth & development , Larva/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...